
INTRODUCTION 

Fabric classification takes a wide range of applica-

tions in textile manufacturing. In the early period,

investigators classified textile materials by manual

operations, such as sensory, combustion, etc. which

involved certain subjectivity and irreversibility. With

the enrichment of variety for textiles increasingly, the

current research hotspot is turned to exploring an

intelligent, efficient, and exact identification strategy

for textile fibres.

The study of textile material recognition has aroused

broad concern in recent years [1–3]. Generally

speaking, the research can be divided into two cate-

gories: static fabric recognition and dynamic fabric

recognition. 

Fabric recognition based on static images

Han et al. [4] segmented the colour and spatial infor-

mation of fabric images and then performed wavelet

transform in line with the frequency components con-

tained in the secondary and tertiary wavelet decom-

position layers to distinguish rough fabrics. Jing et al.

[5] proposed extracting fabric texture features

through a moving grey-level co-occurrence matrix

(GLCM) and Gabor wavelet, sorting the three basic

fabrics with a probabilistic neural network (PNN). The

above studies mainly considered the shape and tex-

ture characteristics of textiles, which were restricted

to the recognition of several fabrics in specific

scenes. 
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ABSTRACT – REZUMAT

Research on fabric classification based on graph neural network 

Fabric classification plays a crucial role in the modern textile industry and fashion market. In the early stage, traditional
neural network methods were adopted to identify fabrics with the drawback of restricted fabric type and poor accuracy.
Combining multi-frame temporality and analysing fabric graph data made from fabric motion features, this paper
proposes a novel hybrid model that introduces the concept of graph networks to classify 30 textile materials in a public
database. We utilize the graph inductive representation learning method (GraphSAGE, Graph Sample and Aggregate)
to extract node embedding features of the fabric. Moreover, bidirectional gated recurrent unit and layer attention
mechanism (BiGRU-attention) are employed in the last layer of aggregation to calculate the score of previous cells.
Intending to further enhance performance, we link the jump connection with adaptive selection aggregation frameworks
to determine the influential region of each node. Our method breaks through the limitation that the original methods can
only classify a few fabrics with great classification results.

Keywords: fabric classification, multi-frame temporality, fabric graph data, GraphSAGE, BiGRU-attention

Cercetări privind clasificarea materialelor textile pe baza rețelei neuronale grafice

Clasificarea materialelor textile joacă un rol crucial în industria textilă modernă și pe piața modei. În faza incipientă,
metodele tradiționale ale rețelelor neuronale au fost adoptate pentru a identifica materialele textile cu dezavantajul
tipurilor limitate de material textil și al preciziei scăzute. Combinând temporalitatea cu cadre multiple și analizând datele
grafice ale materialului textil realizate din caracteristicile de mișcare ale acestuia, această lucrare propune un model
hibrid nou care introduce conceptul de rețele grafice pentru a clasifica 30 de materiale textile într-o bază de date publică.
Am utilizat metoda de învățare a reprezentării prin inducție grafică (GraphSAGE, Graph Sample și Aggregate), pentru
a extrage caracteristicile nodurilor materialului textil. În plus, unitatea recurentă bidirecțională și mecanismul de atenție
a stratului (BiGRU-attention) au fost utilizate în ultimul strat de agregare pentru a calcula scorul celulelor anterioare.
Obiectivul nostru a fost de a îmbunătăți și mai mult performanța, de a lega conexiunea de salt cu cadrele de agregare
a selecției adaptive, pentru a determina regiunea influentă a fiecărui nod. Metoda noastră depășește limitarea conform
căreia metodele originale pot clasifica doar câteva materiale textile cu rezultate excelente de clasificare.

Cuvinte-cheie: clasificarea materialelor textile, temporalitate cu cadre multiple, date grafice ale materialelor textile,
GraphSAGE, BiGRU-attention
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Fabric recognition based on dynamic videos

Bouman et al. [6] put forward a framework for esti-

mating material properties with fabric videos, which

withdrew surface information from inputs to train the

model systematically. The key element overlooked in

their work was multi-frame motion information.  Yang

et al. [7] classified fabrics by recording the change of

external features as they swing, combining the fea-

ture extraction method of the image signal (i.e. CNN,

Convolutional Neural Network) with the time series

learning method (i.e. LSTM, Long Short-Term

Memory). The existing issue was that the potential

association of fabrics was not taken into account. Bi

et al. [8] proved the significance of time sequence for

material property evaluation by investigating the influ-

ence of the temporal and spatial features from multi-

ple frames of motion on fabric bending and stiffness.

However, the research focused on testing the rele-

vance of the model to human perception rather than

the classification of fabrics.

To solve the problems existing in previous approach-

es within the study of fabric classification, a method

was first proposed by Tao et al. [9] that introduced

the concept of the graph to describe the information

of cloth motion characteristics. The graph is a ubiqui-

tous structure that widely occurs in many fields includ-

ing biology (protein-interaction networks) [10], chem-

istry (molecular graphs) [11], cognition intelligence

(knowledge graphs) [12], social sciences (friendship

networks) [13, 14] and other areas [15–17].

Compared to general classification algorithms such

as CNN [18] and LSTM [19], the definition of graph

neural network was originally proposed by Gori et al.

[20] and Scarselli et al. [21] yet it had attracted much

attention in recent years, breaking the limitation that

the traditional network model can only handle

Euclidean data, treating data with generalized topol-

ogy structure on the contrary. It is worth mentioning

that GCN3 [9] took a heavy computation time to han-

dle massive fabric structure data, the above work

was still in the primary stage of textile material recog-

nition study.

Inspired by these previous works and to address the

shortcomings, we put forward a customized graph

neural network model based on fabric graph data for

the recognition and classification of textile material.

The main contributions of our work are summarized

as follows:

• For motion video-based fabric classification, we

apply a fabric feature acquisition method that can

be independent of fabric surface texture, structure,

and colour factors, and convert Euclidean fabric

video data into non-Euclidean fabric graph data by

incorporating spatial feature information of fabric

physical attributes while considering video tempo-

rality to achieve more efficient classification and

recognition of fabrics with fewer memory

resources.

• We are the first attempt to introduce the graph

inductive representation learning method into fabric

classification. At present, the general way of aggre-

gation resulted in the fixed radius of influence can-

not realize the optimal vector representation of

each node and edge of the fabric graph. Hence, we

combine the jump connection and adaptive aggre-

gation mechanism so that nodes anywhere have

the same chance to obtain rich information about

neighbouring nodes.

• To further raise the robustness of the entire model,

we introduce the bidirectional gated recurrent unit

(BiGRU), optimize it with dropout for the avoidance

of the vanishing gradient problem, and distinguish

the significance of neighbour nodes in each layer

via the merit of layer attention mechanism.

• In addition, we evaluate different performance met-

rics such as accuracy, precision, recall, F1-score

and loss of the model with motion videos of 30 dif-

ferent fabrics as the experimental datasets. We fur-

ther compare the proposed model with existing

methods. The result demonstrates that our method

realizes classification better as compared with

other approaches.  

The rest of this paper is organized as follows: in the

second section, we describe the framework, dataset

and data pre-processing details of our proposed

model; in the third section, we introduce the setup

and results of our experiments; in the fourth section,

we present the discussion and comparison with other

works; finally, the conclusion is drawn in the fifth sec-

tion.

MATERIALS AND METHODS 

Fabric force model    

Most of the existing fabric recognition techniques rely

on appearance characterization and multi-frame

motion to determine the category, neglecting the role

of its internal forces in estimating its properties. We

thus perform force analysis for dynamic cloths to

avoid the influence of external factors such as tex-

ture, colour, and light.  

The fabric force model [9] is designed based on the

framework of the social force model [22] for multi-par-

ticle self-driven systems. The model treats the fabric

image as a composition of interrelated and uniformly

distributed particles, and the fabric forms its motion

trajectory as a result of the interaction forces of wind

and tissue fibres, which leads to corresponding vari-

ations in the force flow of the particles, thereby

obtaining fabric force flow information and classifica-

tion in terms of motion characteristics. The model

arranges the particle mesh on the fabric image,

which is partially described in figure 1. Estimating the

combined force of the moving particles with the fab-

ric force model, the force analysis of particle i is

shown in equation 1:

dv
mi     Fa = Fw + Fint (1)

dt

where Fa represents the actual force on the particle

point, Fw stands for the wind force on the particle,

and Fint denotes the interaction force on the particle
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within the fabric, where Fint consists of the downward

gravitational force on the particle point, the upward

tensile force, the mutual repulsive force and tensile

force between the particle points.

The actual speed of particle point i is related to the

wind speed, but since i is also affected by internal

tension, there is a difference between the actual

speed vi and the vw
i generated under stable wind

force, and the relaxation coefficient is defined to opti-

mize the fabric wind force. The calculation formula of

Fw is as follows:

1
Fw =    (vw

i – vi)                     (2)


Each node i suffers from different wind forces, and wi
is introduced to represent the wind weight. When

wi 0, it means that the node is almost free from the

wind, and wi 1, it means that the wind force on the

node is perpendicular to its gravity. Therefore, the

velocity vw
i produced under constant wind is replaced

by v mi , and vc
i stands for the average velocity of the

adjacent nodes, which is shown in equation 3.

v mi = wi v mi + (1 – wi)(v
c
i )               (3)

In the fabric force model, the optical flow is taken to

extract the interaction force Fint from the fabric video.

The average optical flow length of each frame, Oave,

via the mean optical flow in a fixed space-time win-

dow and Gaussian weighted average in space. The

actual speed vi of particle i is the same as the size of

the optical flow Oave(xi,yi) on the coordinate (xi,yi).

By that, the motion speed of the particle i can be

defined as equation 4. 

v mi = wi Oave(xi,yi) + (1 – wi)Oave(xi,yi)       (4)

Corresponding coordinates (xi,yi) in the grid, where

O(xi, yi) denotes the valid temporal average of

particle i, Oave(xi,yi) represents the single point opti-

cal flow value of particle i. The effective average flow

field and effective optical flow between points are

evaluated with the bilinear interpolation method. In

the given fabric scene, the mass of particle i is set to

mi = 1. Thus, Fint is expressed as equation 5.
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dv     1
Fint =     –     (v mi – vi)                 (5)

dt 

Sample details

The dataset for the experiments is derived from the

publicly available database of fabric videos with cor-

responding measured ground truth material proper-

ties [23, 24], which contains videos of 30 different tex-

tiles moving under three different winds. It is shown

as the top two corners of the fabric fixed in the air and

the same wind blowing in from the lower right posi-

tion. Yet, the original fabric video as traditional

Euclidean data cannot meet the requirements of the

graph neural network model. We apply the fabric

force model and visual word bag to convert it into

non-Euclidean data, as shown in figure 2 or details.

Extract fabric movement characteristics
First, the continuous textile video was saved as a pic-

ture by frame with OpenCV, and then obtain the force

flow diagram which combines the fabric force model.

Next, cut the cropped image evenly into small S × S
(S  ℝN) image blocks with the slice tool, called it

visual words. Last, calculate the RGB average value

separately with each block as the unit in terms of the

three primary colours.

Make the node feature list
Taking each frame as a graph node, filter and extract

the visual words with representative fabric color fea-

tures to generate a visual dictionary, which can be

represented by C = {c1, c2,..., ci,..., cm}, where C stands

for visual dictionary; Ci is the i-th visual word in the

dictionary and a total number of visual words is m.

Meanwhile, calculate and store the pixel values of

RGB on each frame in force flow picture as visual

words, V = {v11
, v12

,..., v1T
, v2t

, v2t+1
,..., vc1

,..., vcT
},

where i is the video timing, T represents the total

video duration, and c stands for the type of fabric

number. According to the dictionary C, record 1 under

the corresponding word ci when it appears, and 0

otherwise. Thereby creating a node feature list by

performing the above operations on all graph nodes.

Fig. 1. Fabric stress analysis at time t



Construct fabric graph data
For various types of fabrics, rely on the visual word

list to establish the connection between fabrics. If two

nodes contain more than Z of the same visual word

(Z is customized), there would be a certain similarity

within them. For the same fabric judging by video

temporality, like v1 and v2 are connected, as well as

v2t
and v2t+1

are connected, yet others are not con-

nected such as v12
and v1T

have no relation of time

sequence.

With the above steps, each fabric video was pro-

cessed into 2,700 images, and in total 81,000 fabric

images are obtained. Considering each image as a

graph node, when S = 6 and Z = 18, this database

can generate 81,000 graph nodes and 2,916,000

visual words, and excluding duplicates, 2,230,516

words can be expanded the visual dictionary. As

such, the object of our study is the fabric graph

obtained from processing, i.e., node data containing

force flow features and edge data representing asso-

ciation information. The nodes of the graph are ran-

domly divided into a training set, a validation set and

a test set in the ratio of 6:2:2, which are fed into a

custom graph neural network.

Proposed model  

Graph neural networks enjoy great popularity among

scholars for their excellent performance in graphical-

ly structured data [25]. Graph convolutional network
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(GCN) [14, 26] retained the global structure of the

graph as well as the attribute information of the node.

Hamilton et al. [13] introduced GraphSAGE to con-

catenate features of the nodes and applied it to

mean/max/LSTM operators for inductively learning

node embeddings. Besides, Message Passing

Neural Network (MPNN) by Gilmer et al. [27] further

considered edge information when performing aggre-

gation. Xu et al. [28] proposed a Jumping Knowledge

Network (JK-Net) architecture in which the last layer

of the model can selectively exploit information from

neighbours at distinct locations, thus allowing a great

capture of the node-level representation in a fixed

number of graph convolution operations.

Furthermore, He et al. [29] introduced the Residual

Network (ResNet) to skip layers for leveraging local

information of different depths and hence can assist

in model training, especially as the depth of the net-

work increases. In summary, it can be seen that

scholars have experimented with multiple parties on

how to efficiently acquire graph node embedding fea-

tures, which confirmed the credit of hierarchical level

jump links in enhancing node learning ability.

The overall architecture of our model is shown in fig-

ure 3. We explore a hybrid architecture that effi-

ciently generates unknown vertex embedding utiliz-

ing attribute information of vertices. Sample the neigh-

bours of each vertex and aggregate the information

contained therein to obtain the vector representation

Fig. 2. Process of extracting fabric features from the video database
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of each node in the graph. In the last layer of aggre-

gation, each vertex filters some node feature infor-

mation from embedded representations upstream

and merges them selectively, i.e., the representations

“jump” to the last layer. Each vertex independently

performs this step to adjust its neighbourhood range,

to obtain the adaptive capabilities that are required.

We elaborate the details of our model by hierarchical

order that illustrates the design of the bidirectional

gated recurrent unit model with the attention mecha-

nism. Applying a dropout layer after the embedding

layer, the next layer is the BiGRU layer. Both GRU

and LSTM are special variants of Recurrent Neural

Networks (RNN) with logic gates. BiGRU-attention

transmits the expression of each layer into the

BiGRU so that each layer gets a forward representa-

tion and a backward representation, then sends them

to the linear layer in series, and obtains the attention

score of nodes in different neighbourhood ranges

with softmax function, and finally receives the expres-

sion in weighting and summing.

EXPERIMENTS 

Setup

The proposed model is trained and tested in NVIDIA

Quadro M5000 with an 8 GB graphical processing

unit (GPU), Intel(R) Xeon(R) CPU E5-2620 v3 @

2.40 GHz, and 16 GB RAM. Our model is imple-

mented by PyTorch and the details of the parameter

required for the experiment are shown in table 1.

Results

To confirm the effectiveness of our customized

method, we perform ablation comparisons in multiple

experiments and choose five metrics generally

applied for multi-classification tasks to measure the

performance of the model including accuracy, preci-

sion, recall, F1-score, and loss (table 2). 

As it is known from [28] currently, the best perfor-

mance of aggregation-based graph networks is two

layers, and further layers would degrade the model

performance. While GCN generates embedded fea-

tures only for the current node during training, and

cannot scale to unknown nodes, GraphSAGE pro-

vides an inductive framework by sampling and aggre-

gating neighbouring vertices to generate embedding

features for unknown nodes. According to the exper-

imental data in table 2, regarding large-scale fabric

graphs based on the same set of layer aggregation

mechanisms, the accuracy, precision, and recall rate

of two-layer GraphSAGE are slightly 0.5% higher

than GCN, and the loss is slightly 2.4% lower.

Besides, based on the same set of network embed-

ding layers, we explore six mechanisms like con -

catenation, max-pooling, (Bi)LSTM-attention, and

(Bi)GRU-attention. Concatenation is to connect the

node representations of all layers in series and then

perform a linear transformation. Yet, its transforma-

tion weights are equal for all nodes and cannot reach

the adaptive effect. Max-pooling selects the most

informative layer for each feature node, graph nodes

Fig. 3. The overall architecture of the proposed model

DETAILS OF THE EXPERIMENTAL PARAMETER

Parameter Value Description

Lr 0.005 Initial learning rate

Epoch 1000 Number of epochs

H_dim 64 Number of hidden units

Dropout 0.6 Dropout rate

Loss NLLLOSS Loss function

Optimizer Adam Adam Optimizer to train

Weight-decay 1e-7 L2 regulation weight

Table 1



that represent more local attributes can learn embed-

ding information from the neighbourhood, while

nodes representing global states prefer features from

higher levels. From the perspective of the recurrent

unit structure, GRU takes fewer connections and

parameters throughout the network compared to

LSTM, thus the model is more efficient with training

and generalizing, and the BiGRU-attention is node-

adaptive since each node has different attention

scores. In short, BiGRU-attention is more suitable
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than the above five aggregation ways for large and

complex fabric graphs.

From figure 4, we can notice more intuitively the com-

parison of classification accuracy and training loss in

multiple ablation experiments. The experimental

results show that our method has the best results in

terms of precision, accuracy, recall, and F1 score,

respectively, as well as the lowest loss of 19.8% for

the whole group.

COMPARISON OF ABLATION EXPERIMENT RESULTS

Parameter
Accuracy Precision Recall F1-score Loss

Net.Layer Agg.Layer

GCN2

Concat 0.939 0.943 0.918 0.930 0.384

Max-pooling 0.943 0.947 0.924 0.935 0.257

LSTM 0.951 0.952 0.933 0.942 0.220

BiLSTM 0.953 0.958 0.941 0.949 0.208

GRU 0.952 0.959 0.940 0.949 0.198

BiGRU 0.957 0.961 0.933 0.947 0.193

SAGE2

Concat 0.939 0.944 0.925 0.934 0.350

Max-pooling 0.946 0.949 0.934 0.941 0.217

LSTM 0.949 0.952 0.943 0.947 0.228

BiLSTM 0.957 0.960 0.938 0.949 0.207

GRU 0.955 0.958 0.935 0.946 0.191

Ours 0.959 0.962 0.945 0.953 0.190

Table 2

Fig. 4. Comparison of ablation experiment results: a – Accuracy(GCN2+); b – Loss(GCN2+);

c – Accuracy(SAGE2+); d – Loss(SAGE2+)
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DISCUSSION

Researchers suggested methods based on tradition-

al machine learning techniques in previous studies.

Table 3 presents a comparison of this work with other

baseline approaches.

The above studies were tested in the same public

fabric database, which can identify 30 kinds of fab-

rics. To reflect the advantages of our method, we

apply three traditional classification algorithms in

machine learning to conduct experiments and syn-

thesize the other three existing study results for com-

parative analysis. As be analysed that the Inception

V3 automatically classified the fabrics with the fea-

tures of the fabric surface, yet the accuracy of fibre

recognition was only 13.1%. The SVM only recog-

nized the wrinkle information on the surface, and the

accuracy cannot be strong due to insufficient feature

extraction. The LSTM focused on the study of the

motion state in datasets, and just considered the

inherent timing characteristics, resulting in 63.8%.

The Regression Model comprehensively analysed

the feature and motion information of the surface for

fabric in the video, as well as the CNN+LSTM, used

the motion of appearance to infer physical character-

istics for textiles, however, the results of the

CNN+LSTM and regression model were not very sat-

isfactory, 66.7% and 70.0% respectively. GCN3 and

our method comprehensively considered multi-frame

timing information and fabric movement characteris-

tics. Compared with GCN3, the accuracy of our

method is about 11.4%, up to 95.9%. In summary, the

customized model proposed in this paper had the

best effect on the classification of fabrics.

T-SNE was presented by [31] and is mostly used to

visualize high-dimensional data and project it into

low-dimensional space. To get the classification

recognition effect of our model visually, we visualize

the experimental data with T-SNE, as shown in fig-

ure 5. It can be observed that a graph node repre-

sents a kind of fabric, we attempt to distinguish fabric

categories with 30 different colours, and the more

nodes of the same colour gather, the better the fabric

classification. The node aggregation of the same fab-

ric is obvious except for a very small part.

CONCLUSION

In this paper, we propose a customized graph neural

network architecture for the identification and classi-

fication of textile material. Our hybrid model takes

GraphSAGE to complete the graph embedding oper-

ation. and then introduce jump connection and adap-

tive aggregation mechanism, effectively combining

the advantages of BiGRU-attention, thus further

improving the model performance. Besides, the

model is robust when fabric texture, colour, and other

factors are disturbed. In addition, we apply a variety

of classification metrics to evaluate the performance

of our model. Compared with other baseline meth-

ods, the experimental results show that the perfor-

mance of this method is superior to other existing

research, and although there is still upward mobility

in our classification effects, it is noteworthy that this

work has potential in the textile and fashion industry.

In the future, we will further understand the research

frontiers of textiles to extract finer fabric features and

more accurate motion information to achieve fabric

simulation.
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PERFORMANCE COMPARISON AGAINST BASELINE

APPROACHES

No.
Details Accuracy

(%)Method Features

1 Inception V3
Based on surface

features
13.1

2 SVM
Based on surface

wrinkle
78.3

3 LSTM
Based on video tim-

ing
63.8

4 CNN+LSTM [7] 
Based on motion

video 
66.7

5 
Regression

Model [6]

Based on stiffness

and density
70.0

6 GCN3 [9] Based on motion

video
84.5

7 Ours
Based on motion

video
95.9

Table 3

Fig. 5. Visualization of the classification result

of 30 textile materials
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